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A DIFFERENTIAL-GEOMETRIC CRITERION FOR

A SPACE CURVE TO BE CLOSED

HWANG CHENG-CHUNG

Abstract. In the present paper the author gives a necessary and sufficient

condition to be satisfied by the curvature and torsion of a space curve in order to

guarantee this curve to be closed (periodic).

In the lectures delivered by Professor Shiing-Shen Chern at the Institute of

Mathematics of Academia Sinica when he visited Peking in June of 1978, he raised

the following question:

What is the necessary and sufficient condition to be satisfied by the curvature and

torsion, so that a space curve be a closed one!

The aim of the present paper is to give an answer.

Let s denote the arc length of a space curve (C) measured from a fixed point;

and let k(s) > 0 and a(s) be the curvature and torsion of (C) respectively; let

[e„ e2, e3] denote an orthonormal basis in the Euclidean space E3 of 3 dimensions,

and we use

X   ^=   Xi€i     i    Xy€y    i     X^€^

to denote the position vector of a generic point. Let w be the total length of (C).

When (C) is a closed curve, the position vector x(s) must be a periodic function of

period w. Here "period" is understood in the usual sense. Then from the formulas

Curvature k(s) =Vll*"ll2 ,   Torsion o(s) = k'\x', x", x'")

(x' = dx/ds, etc.) we find k(s) and a(s) are also periodic of the same period.

However, periodicity of k(s) and o(s) are not sufficient to guarantee a space curve

to be closed. For instance, the circular helix provides a counterexample.

In the following both k(s) and o(s) are assumed to be continuous and periodic of

period io, the vector function x(s) is therefore assumed of class C3. Let £, r¡, f

denote the unit tangent, principal normal, and binormal vectors respectively at a

generic point on the space curve (C). Then we have the classical Frenet-Serret

formulas

(1) di/ds=k^,    cfq/ds = -k~Í+o$,   d£/ds = -oij.

Writing I, ij, f in coordinate form as £ = 23_, %et, r¡ = 23_ j %$,, f = 23_, f,e¡ we

find (£„ i),, f,), (£2, tj2, £2)' (£3» ̂ 3» £3) are three independent solutions of the follow-

ing system of differential equations:

(2) d<p1/ds = ktp2,   d(p2/ds = -fctp, + o<p3,    dq>3/ds = -o<p2.
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Obviously, (2) is a special case of the general equations

(3)       (kpt/dt = an(t)<px + ai2(t)<p2 + ■ ■ ■ +ain(t)<p„       (/ - 1, 2,..., n)

where a¡j(t) are assumed to be continuous and periodic of period u. Let the initial

conditions be <p¡(0) = A,. For brevity, we write

<p =

<Pi

<Pn

*(0- "•21

"nl

■»22

*ril

a2n

am

Then 4>(i) is a continuous periodic matrix function of period u. Let us make the

conventions f'0®(r) dr = (f'oaij(r) dr), an n X n matrix, and

A =

A,

A2

K

<p(l, \) =

9i(t, A)

<p2(r, X)

<ï>„('> À)

(4)

Then the equation (3) may be abbreviated to the form

dtf/dt = <*(0<P,       <P(0) = A.

The equations (4) are equivalent to the integral equation

<p(t) =X+ f <J>(t)<Kt) dr, (5)
•'o

for which both existence and uniqueness of solution are well known (for instance,

see E. A. Coddington and N. Levinson, Theory of ordinary differential equations,

McGraw-Hill, New York,  1955, p.  11), because continuity of $(r) has been

assumed. Periodicity of <p(t, X) may be represented by

q>(t + w, X) = <p(t, X)       (0 < t < w). (6)

As

<p(/,X) = À+ P<Ï>(t)(p(t, À) ¿t,
•'0

Jr t + u
<I>(t)(p(t, X) dr,

n

we have

4>(t)(p(t, A) dr
o

+ ('$(t)[<p(t + <o, X) - <p(t, A)] dr.

If <p(/, X) is periodic in r, then by (6) we obtain

f "<I>(t)<p(t) X) dr = 0. (7)

Conversely, assuming (7), we deduce <p(t + u, X) — <p(t, X) is a solution of the

integral equation \b(t) = f'0 <I>(t)i|/(t) dr. Then from uniqueness of solution we



A DIFFERENTIAL-GEOMETRIC CRITERION 359

assert <p(t + w, A) — <p(t, X) = 0. Thus we have proved the

Lemma. 77ie solution <p(r, X) of the equation

dtp/dt = $(i)<P,       <p(0) = A

(<&(/ + <o) = #(r)) is periodic of period w, if and only if

f $(r)<p(r, X) dr = 0.
•'o

Now we review how the solution <p(t, X) is constructed. Recalling the well-known

method of successive approximation due to E. Picard, let

«o = A,    u„(t) =X+ f'$(r)u„_ ,(t) dr       (n = 1, 2, 3, . . . )

and pay attention to the facts:

1°. The u„(t) are periodic vector functions of t.

2°. {u„(t)} is uniformly convergent on the interval [0, <o].

3°. Let lim,,^ un(t) = <p(t, A). Then <p(/, X) = X + f0 $(t)<p(t, A) dr.

4°. The u„(t) aie linear in A.

Let (£•$)(/) = £(1)4>(i) = /Ó 4>(t) ¿t and we define recursively, for n > I,

(£("><I>)(/) = f'$(T)(£("_1)<ä>)(T)rfr.
■'o

Then

M,(r) = {£ + £d>(í)}\       (£ = unit matrix),

«2(0 = {E + £<D(0 + £<2>$(i)}A,

«„(f) = {£ + £$(/) + £(2>á)(/) + • • • + £<">$( f)}\.

Let n -> + oo. Then <p(i, X) = {E + £<ï>(r) + • • • + £(n)$(f) + • • • ]X, and hence

fU$(t)<p(t, X) dt = i/'Vf) «* + j""*(0ß*(0 *+•••}

= (£í>(co) + £<2>$(«) + • • • +£<"+1>$(<o) + • • • }A

= M(w)A,

where the matrix M(t) is defined by M(t) = £$(r) + £(2)«$(0 + • • • + &n)®(t)

+ • • • .

Remark. In the special case that 4> commutes with £«3> (for example, when i>(r)

is a constant matrix), the solution of the differential equation dtp/dt = $(r)<P>

m(0) = X can be written explicitly as

fit) = [exp(£4>)(/)]A = ^exp(/o'$(T) dr)

[see, e.g., W. Hurewicz, Ordinary differential equations, M.I.T. Press, Cambridge,

Mass., 1958, pp. 38-40]. In particular, the matrix M(t) is given by

M(t) = fexp  (%(r) dr) - E
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(E = identity matrix).-This remark was added according to the suggestion of the

referee, to whom the author wishes to express his deep gratitude.

Applying our lemma, we obtain

Theorem I. The equations dtp/ dt = $(t)tp possess a nonvanishing periodic solution

of period w, if and only if det(M(w)) = 0. In particular, in order that the equations

dtp/dt = $(t)tp possess n linearly independent periodic solutions of period w, the

necessary and sufficient condition is that M(cS) be a zero matrix.

Now applying our Theorem I to the equations (2), then

0 k(s)        0

<!>(s) =    -k(s)        0        a(s)

0        -a(j)       0

f'k(t) dt 0
-'o

0 f'o(t) dt
Jo

- f'a(t) dt 0

0

fadsf\k(s)k(t) + a(s)a(t)] dt

£«í>(j) = -fk(t)
Jo

dt »

£24>(w) =

- Cds Ck{s)k(t) dt
Jo     Jo

Cos fSo(s)k(t) dt
■>0        •'0

Cds (Sk(s)o(t) dt
Jo     Jo

0
JfU        ¡.s

ds I  a(s)o(t) dt
o     •'o

and so on. When and only when the matrix M(w) is a zero matrix, there exist three

mutually orthogonal unit vector functions |(í), t)(s), f(s) of period a, such that each

set of functions {£,(*)> 1ï/(s)> ?»■(*)} (' = h 2, 3) form a solution of the equation

dtp/ ds = <b(s)tp(s) corresponding to the initial condition (a¡, b¡, c¡). The vector

function defining the space curve (C) is

x(s) = (%) ds,

where £(s) is given by

M(s) (i = 1, 2, 3).

The curve (C) is periodic with period u, if and only if /£ ¿(j) ds = 0. Now let the

initial conditions be £.(0) = a¡, t/,(0) = b¡, £,-(0) = c, (i = 1, 2, 3), where (au a2, a3),

(bv b2, b3), (c,, c2, c3) form an orthonormal frame. Then
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+ M(t)

i.e., £ = a, + mna, + »1,26, + muc¡ (i = 1, 2, 3), so /£ e¡(s) ds = aa¡ + aJZ mu ds

+ bJo ml2 ds + cJq mI3 ds. Since the determinant

1 by <

,     b2    c2 =f= 0,

,     6,     <

the condition  /£ £(j) ds = 0 is equivalent to  w + /£ wu <¿y = 0 = /¡J m12 <& =

/o w,3 <ft. Thus we have proved the following

Theorem II. Let k(s) > 0 and o(s) be continuous periodic functions of period o> and

let (C) be a curve in E3 with curvature k and torsion a. Then (C) is periodic with

period a, if and only if

(i) the matrix A/(w) = 0,

(ii) to + /o wn ds = 0 = Jo /n12 ifc = Jo w13 ¿&, where

M{t) = £$(i) + £(2>-3>(/) + • • • + £<"><*>( *) + • • • ,

0 k(t)        0

4>(i) =    -k(t)        0 a(/)

0        -a(i)       0

and my(t) are the entries of the matrix M(t).

Theorem II provides a decisive answer to the question asked by Professor Chern,

which we have mentioned at the beginning of this paper. By means of this theorem

we can verify the curve determined by

Curvature k(s) = Const. > 0 and Torsion o(s) = Const, is

periodic of period w, if and only if a = 0 and k = 2w/w.

Remarks. 1. Although Theorem II is a decisive answer to Professor Chern's

question, yet it is not quite satisfactory, for when this criterion is applied to a

concrete problem, infinitely many integrations are involved. But it is doubtful

whether this problem has a solution involving only a finite number of calculations

at the present stage of mathematics.

2. It has been well known that for closed curves the total curvature and total

torsion defined by /£ k(s) ds and /£ o(s) ds are geometric invariants playing an

important role in the theory of curves. It would be an interesting problem how to

interpret geometrically the following invariants:

i" dt['k(t)k(s)ds,        [" dtf'k(s)o(t)ds,        (" dtf'a(t)o(s)ds,
Jn J(\ Jf\ Jft Jn Jf\

etc.
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